Flexible and Robust Large Scale Multicast using i3

Karthik Lakshminarayanan Ananth Rao |on Stoica Scott Shenker
UC Berkeley ICS

Report No. UCB/CSD-02-1187

/l June 2002

[

| Computer Science Division (EECS)
University of California
Berkeley, California 94720

4

Flexible and Robust Large Scale Multicast using i3

Karthik Lakshminarayanan Ananth Rao

lon Stoica Scott Shenker

UC Berkeley ICS

June 2002

Abstract

There have been many proposals to support multicast in the
Internet. These proposals can be roughly categorized as be-
ing either infrastructure-based, with the multicast function-
ality provided by designated network nodes, or host-based,
with the multicast functionality provided by the members of
the multicast group itself. These two classes have very dif-
ferent performance characteristics; typically infrastructure-
based solutions are far more scalable, while the host-based
solutions are far more deployable and flexible.

This paper proposes a multicast architecture, that is a hybrid
of the two approaches, based on the Internet Indirection In-
frastructure (¢3). ¢3 provides a general-purpose rendezvous
primitive that end hosts can use to implement multicast in
a scalable, flexible, and deployable manner. To demonstrate
the feasibility of this approach, we have designed and imple-
mented a scalable solution for multicast, and then extended
it to provide reliable data delivery. To evaluate our design we
perform extensive simulations, and experiments on two test-
beds: a PC cluster, and a small size Internet-wide test-bed
consisting of 13 end-hosts. From simulations, we found that
the 90th percentile latency stretch for 65,536 receivers is less
than 5. Also, for 4,096 receivers, no more than 1.5 duplicates
were generated for each lost packet.

1 Introduction

The original Internet architecture was designed to provide
unicast point-to-point communication, and it has proved
tremendously successful at doing so. However, efficiently
reaching many users simultaneously with high-bandwidth
streams (such as required for real-time video and audio)
requires multicast functionality. The last decade has seen
a myriad of multicast proposals, none of which are in
widespread use today.® These proposed multicast designs
can be roughly classified into infrastructure-based and host-
based solutions. Infrastructure-based solutions implement
multicast functionality in a set of designated network nodes
that are responsible for constructing the multicast tree and
replicating multicast packets at the branch points in that tree.
Examples of infrastructure-based solutions are IP multicast
[10] which implements the multicast functionality at the IP

1IP multicast is offered in several commercial routers, but mul-
ticast service is not made available to users by most ISPs.

layer (and so the designated multicast nodes are all network
routers), and application-level solutions such as Overcast
[18] and Fastforward [2], which use a set of special servers
for the designated multicast nodes.

In contrast, the host-based multicast designs, such as Narada
[8] and NICE application multicast protocol [4], require no
support from any designated network nodes. Instead, the
multicast functionality is implemented entirely by the col-
lection of end-hosts participating in the multicast group.

These approaches have very different performance charac-
teristics. The infrastructure-based approaches, through their
use of designated nodes spread throughout the network, can
typically build more efficient multicast trees and so are more
scalable in terms of numbers of users. On the other hand,
host-based solutions do not involve any additional infrastruc-
ture support and are hence much easier to deploy and can
more easily add new functionality; in short, they are more
deployable and flexible.

In this paper, we propose a hybrid solution that combines
features of both approaches and in doing so, provides high
degree of scalability, flexilibity and deployability. The key
idea in our approach is to rely on the Internet Indirection
Infrastucture (3). As described in Section 2, ¢3 provides a
very basic and general-purpose rendezvous primitive that has
a wide range of applications. We then propose that the end-
hosts implement the rest of the multicast functionality, us-
ing the 3 rendezvous primitive as the building block. This
13 primitive enables the end-hosts to create efficient multi-
cast trees, and at the same time gives the end-hosts flexibil-
ity to implement additional features such as reliability. Thus,
the resulting multicast solution is more scalable than current
end-host based solutions and more flexible and deployable
than current infrastructure-based approaches.

Following [17], the general design philosophy advocated
here is that the infrastructure should not be augmented to im-
plement additional particular services, such as multicast, but
rather the infrastructure should support minimal, and more
general-purpose primitives that end hosts can then use to
construct a variety of services. The challenge is to find prim-
itives that overcome the main impediments to scalability, but
yet are sufficiently general to provide flexibility. We believe
that the 43 primitives are one such example, and this paper is
partially a proof-by-example of how these primitives can be

13’s Application Programming Interface (API)
send_packet(p) send packet
insert_trigger (¢) insert trigger
remove_trigger (t) | remove trigger

@)

receiver (R)

©

Figure 1: (a) 43’s API. Example illustrating communication be-
tween two nodes: (b) The receiver R inserts trigger (id, R). (c) The
sender sends packet (id, data).

flexibly, yet scalably, used.

The remainder of the paper is organized as follows. Section 2
gives an overview of ¢3. Section 3 presents our scalable mul-
ticast solution, and Section 4 presents a simple and efficient
solution to provide reliability. Sections 5 and 6 evaluate our
proposed solution by simulations an experiments. Finally,
Section 7 presents the related work, and Section 8 concludes
the paper.

2 Background

In this section we present a brief overview of an Internet In-
direction Infrastructure, 43 [26], which forms the foundation
for our multicast solution. The purpose of 43 is to provide in-
direction, that is, it decouples the act of sending from the act
of receiving. The 43 service model is simple: sources send
packets to a logical identifier, and receivers express interest
in packets sent to an identifier. Packet delivery is best-effort
like in today’s Internet.

2.1 Rendezvous-based Communication

The service model is instantiated as a rendezvous-based
communication abstraction. In their simplest form, pack-
ets are pairs (id, data) where id is an m-bit identifier? and
data is the payload (typically a normal IP packet payload).
Receivers use triggers to indicate their interest in packets.
In their simplest form, triggers are pairs (id, addr), where

%In the implementation presented in this paper, we use m =
256. Such a large value of m allows end hosts to choose trigger
identifiers independently since the chance of collision is extremely
small. In addition, a large m makes it very hard for an attacker to
guess a particular trigger identifier.

id is the trigger identifier, and addr is a node’s address,
consisting of an IP address and UDP port number. A trig-
ger (id,addr) indicates that all packets sent to identifier
id should be forwarded (at the IP layer) by the i3 infras-
tructure to the node with address addr. More specifically,
the rendezvous-based communication abstraction exports the
three primitives shown in Figure 1(a).

Figure 1(b) illustrates the communication between two
nodes, where receiver R wants to receive packets sent to
id. The receiver inserts the trigger (id, R) into the network.
When a packet is sent to identifier id, the trigger causes it to
be forwarded via IP to R.

Thus, as in IP multicast, the identifier id represents a logical
rendezvous between the sender’s packets and the receiver’s
trigger. This level of indirection decouples the sender from
the receiver and enables them to be oblivious to the other’s
location. However, unlike IP multicast, hosts in 3 are free to
place their triggers. As we will see, this allows end-hosts to
construct a scalable multicast service.

2.2 Implementation Overview

13 is implemented as an overlay network which consists of a
set of servers that store triggers and forward packets (using
IP) between 3 nodes and to end hosts.

To maintain this overlay network and to route packets in 43,
we use the Chord lookup protocol [9]. Chord assumes a cir-
cular identifier space of integers [0,2™), where 0 follows
2™ —1. Every i3 server has an identifier in this space, and all
trigger identifiers belong to the same identifier space. The 3
server with identifier n is responsible for all identifiers in the
interval (n,, n], where n,, is the identifier of the node preced-
ing n on the identifier circle. Figure 3(a) shows an identifier
circle form = 6. There are five 43 servers in the system with
identifiers 5, 16, 24, 36, and 50, respectively. All identifiers
in the range (5, 16] are mapped on server 16, identifiers in
(17, 24] are mapped on server 24, and so on.

When a trigger (id, addr) is inserted, it is stored on the 3
node responsible for id. When a packet is sent to id it is
routed by ¢3 to the node responsible for id. At that i3 node,
it is matched against (any) triggers for that <d and forwarded
(using IP) to all hosts interested in packets sent to that identi-
fier. Chord ensures that the server responsible for a identifier
is found after visiting at most O(logn) other ¢3 servers ir-
respective of the starting server (n represents the total num-
ber of servers in the system). To achieve this, Chord requires
each node to maintain only O(logn) routing state. Chord al-
lows servers to leave and join dynamically, and it is highly
robust against failures. For more details refer to [9]. Fig-
ure 3(b) shows an example in which trigger (30, R) is in-
serted at node 36 (i.e., the node that maps (24, 36], and is
thus responsible for identifier 30). Packet (30, data) is for-
warded to server 30, matched against trigger (30, R), and
then forwarded via IP to R.

(i02.688) (3 dere)

(c) Chain of triggers

Figure 2: Basic communication primitives provided by ¢3. (a) Multicast: Every packet (id, data) is forwarded to each receiver R; that inserts
the trigger (id, R;). (b) Anycast: The packet matches the trigger of receiver R2. idp|ids denotes an identifier of size m, where 4d, represents
the prefix of the & most significant bits, and id represents the suffix of the m — k least significant bits. (c) Trigger chains: Replace the receiver
address in the second field of a trigger with another trigger identifier.

nsertTrigger(30, R)

5<'

(50,5]

(b)

Figure 3: (a) A Chord identifier circle for m = 6, with 5 servers identified by 5, 16, 24, 36, and 50, respectively. Each server is responsible
for all identifiers between its identifier and the identifier of the node that precedes it on the circle. (b) Receiver R inserts trigger (30, R), and
the trigger is forwarded via 43 to server 36 which is responsible for identifier 30. The trigger is stored there (shown in the white box) until
explicitly removed or timed out. When sender S sends packet (30, data), it is also forwarded via ¢3 to server 36. Servers identifiers are in

bold. The interval of identifiers for which each server is responsible are also shown.

Note that packets are not stored in i3; they are only for-
warded. End hosts use periodic refreshing to maintain their
triggers in 43. Hosts need only know one 3 node to use the
13 infrastructure. This can be done through a static config-
uration file, or by a DNS lookup assuming #3 is associated
with a DNS domain name. In Figure 3(b), the sender knows
only server 16, and the receiver knows only server 5.

One important observation is that once the end host finds
the server that is responsible for a specific identifier, it can
cache that server’s address. The end-host can then refresh the
triggers and send packets with the same identifiers directly to
that server. Thus only the first few packets of each flow incur
the Chord routing overhead.

2.3 Basic Communication Primitives

Small Scale Multicast (Packet Replication): Creating a
multicast group is equivalent to having all members of the

group register triggers with the same identifier id. As a re-
sult, any packet that matches id is forwarded to all members
of the group (see Figure 2(a)). Since all triggers with the
same identifier are stored at the same ¢3 server, that server
is responsible for forwarding each multicast packet to every
member of the multicast group. This solution obviously does
not scale to large multicast groups. We present our solution
to make the multicast scalable in Section 3.

Anycast: Anycast ensures that a packet is delivered to at
most one receiver in a group. Anycast enables server selec-
tion, a basic building block for many of today’s applications.
To achieve this with ¢3, all hosts in an anycast group main-
tain triggers which are identical in the £ most significant bits.
These k bits play the role of the anycast group identifier. To
send a packet to an anycast group, a sender uses an identifier
whose k-bit prefix matches the anycast group identifier. The
packet is then delivered to the member of the group whose
trigger identifier best matches the packet identifier according

to the longest prefix matching rule (see Figure 2(b)).

Trigger Chains: 43 allows end-hosts to chain multiple trig-
gers by replacing the receiver address of the second field of
a trigger with the identifier of another trigger. Figure 2(c)
shows an example of a chain of triggers of length three. Note
that replacing a trigger (id;, R) with a a chain of triggers
(idy,idy), (ids,id3), and (ids, R) is transparent to the end-
hosts.

Figure 4: Example of a scalable multicast tree with bounded
degree by using chains of triggers.

3 Scalable Multicast Protocol

In this section, we present an algorithm to build a scalable
multicast tree, and in the process demonstrate the flexibility
of the basic multicast and anycast primitives provided by 3.
Section 4 presents an extension of the algorithm to achieve
reliable data delivery. For simplicity, in our discussion we
assume a single source tree. Section 3.2.2 extends this model
to multiple sources.

As discussed in Section 2.3, storing an arbitrary number of
triggers with the same identifier causes scalability problems
since the 43 server that stores these triggers must send a
replica for every incoming packet that matches these trig-
gers. To get around this problem, we assume that each i3
server puts a limit D on the number of triggers with the
same identifier it stores. In other words, D represents the
maximum number of receivers in a multicast group that are
allowed by the basic 3 multicast primitive. This is the rea-
son why the native multicast support that 43 provides does
not scale beyond D receivers.

The key idea to achieve scalability is to build a hierarchy of
triggers, where each member R of a multicast group identi-
fied by id,, replaces its trigger (id,, R) by a chain of triggers
(idg, x1), (%1, x2), - - ., (x;, R). Note that this substitution is

/1 node npew joins the multicast tree with sender S
join(S; npew)
best_dist = oo
Neurr = S
do
/I return the closest node to npeqw fromjset(neurr)
n = select_node(nnew, jset(Neurr))
if (best_dist > dist(S,n, Nnew))
best_dist = dist(S, n, Nnew)

Njoin =N
if (fset(ncurr) =0)
break

Neurr = select_node(npew, fset(neurr))
while (dist(S, ncurr, Nnew) < best_dist)
join_at(nnew, Njoin) 1 Npew jOINS AL Njoin

Figure 5: Joining algorithm.

transparent to the sender: a packet (id,, data) will still reach
R via the chain of triggers. The chain maintained by each
member represents a path through the tree. Thus, some of
the triggers (z;, x;+1) may be shared by more than one re-
ceiver. Figure 4 shows an example of multicast tree with 7
receivers where D = 3.

Next, we present our algorithm to build such a multicast tree.
For the clarity of exposition, we divide our presentation into
two parts: Section 3.1 presents a simple tree building algo-
rithm that abstracts away the interaction of the end-hosts
with the infrastructure, while Section 3.2 presents an effi-
cient implementation of this algorithm in 3.

3.1 Basic Tree Building Algorithm

In this section, we present a basic tree building algorithm that
abstracts away the interactions between end-hosts and 3. In
particular, our goal is to build a multicast tree of bounded
degree D which exhibits low latency from source to each
receiver. Figure 6(a) shows a multicast tree with D = 3 con-
sisting of six receivers and one source S, and one new re-
ceiver, R, that wants to join the multicast group.

We say that a node in the multicast tree is joinable if its out-
degree is less than D. Otherwise, if the node’s out-degree
is D, we say that the node is full. Let .S denote the source
of the multicast tree, let n denote a joinable node already in
the tree, and let n,¢,, denote a new node that wants to join
the multicast tree. Assume n,,, joins the multicast tree at n.
Then, let dist(S,n, nnew) be the latency experienced by a
multicast packet from source S t0 n,¢q, Via n. In particular,
dist(S,n,nnew) represents the latency from source S to n
(via the multicast tree) plus the IP latency from n t0 n,cq.

The goal of the joining procedure is to find a joinable node
n that provides a short distance path from S to n,¢q. Let
dist(S,m,nnew) denote this distance. To achieve this we
use a “branch-and-bound” algorithm that starts from source

(@)

S

3] 2
3
R1 R20 R3
2
f / 1 2

R7 OR5 OR6
OR4

(b)

Figure 6: (a) R7 wants to join an existing multicast tree. Joinable nodes are represented by empty circles; full nodes are represented by black
circles. (b) The resulting tree obtained by running the algorithm in Figure 5.

and goes down the tree until it can no longer improve
the distance from S t0 nney O until it reaches the leaves
of the tree. Figure 5 shows the pseudocode of the join-
ing procedure. Let jset(n) denote the set of joinable chil-
dren of n, and let fset(n) denote the set of full children
of n. The algorithm maintains a variable n,,. that is ini-
tialized to source S, and a variable best_dist that repre-
sents the best known latency from S to 7., Vvia one of
the nodes visited so far. At each iteration, the algorithm se-
lects node n from jset(ncyr) that minimizes the distance
from S 10 npew, dist(S,n, npeyw). I this distance improves
best_dist, the algorithm updates best_dist. Similarly, the al-
gorithm selects the node n’ from fset(ncyr») that minimizes
dist(S,n', nnew). If this distance doesn’t improve best _dist
the algorithm terminates, and 7., joins the tree at the node
corresponding to best_dist. Otherwise, the algorithm sets
newrr 10 n', and iterates.

Figure 6 shows a simple example in which a new receiver,
Ry, joins an existing multicast tree with six receivers. The
number along each edge represents the latency associated
to that edge. At the first level, there are two joinable nodes
jset(S) = {Ru, R»}, and one full node j full(S) = {R3}.
Among the joinable nodes, the algorithm selects R; since
dist(S, Ry, R;) = 5 is larger than dist(S, Ry, R7) = 6.
Next, the algorithm selects the full node R3 and iterates.
Among the children of R3, the algorithm selects node R4,
as diSt(S, Ry, R7) < dZ'St(S, Rs, R7) = diSt(S, R, R7)
Finally, since dist(S, R1, R7) < dist(S, R4, R7) the algo-
rithm terminates and Ry joins at R;.

3.2 Scalable Multicast Protocol
In this section we show how the end-host multicast protocols
described in the previous section is implemented in ¢3.

Figure 7(a) shows a possible hierarchy of triggers that corre-
sponds to the multicast tree in Figure 6(a). Indeed, if we col-

lapse all triggers with the same identifiers, and each receiver
R; with its trigger (id;, R;), then the tree in Figure 7(a) de-
generates into the end-host multicast tree in Figure 5(a). A
new node Ry joins the multicast group at an identifier id
by inserting two triggers (id, idy) and (idy, Ry), where idy,
is an identifier located at an 3 server close to Ry. For ex-
ample, in Figure 7(b), R joins at identifier ¢d; by insert-
ing triggers (idy , id) and (id7, R7), respectively. Since each
trigger (id;, R;) is assumed to be located on a server close
to receiver R;, in the remainder of this section we neglect
the latency between R; and id;. In particular we assume that
the latency from S to Ry is equal to the latency from S to
R, plus the latency from R; to R;. To remain consistent
with the notation used in the previous section we will use
dist(S, Ry, Ry) and dist(S, id;, Ry) interchangeably to de-
note the latency from S to Ry.

The main challenge to implement the pseudocode shown
in Figure 5 in 43 is to efficiently implement dist() and
select_node() functions. To address these challenges, we use
two techniques, (1) ¢3 multicast to implement select node(),
and (2) a simple scheme based on local time-stamps to com-
pute the relative value of dist(). Since the pseudocode in
Figure 5 uses the results returned by dist() only for compar-
ison proposes, computing a relative instead of an absolute
value for dist() is good enough.

Figure 8 shows the pseudocode of the joining procedure
in 43. To implement select_node(), we use the i3 multi-
cast primitive. In particular all receivers in a set (e.g., jset
or fset) will subscribe to a unique 43 multicast group. Con-
sider a receiver R that is connected through triggers (id', id)
and (id, R) to the multicast tree. To maintain the one-to-one
mapping between the multicast trees in Figures 5(a) and 7(a),
we slightly change the definition of joinable and full nodes to
take into account the fact that a receiver that joins at an inter-
nal node in the multicast tree requires an additional trigger. In
particular, we say that receiver R is joinable if there are less

Figure 7: The hierarchy of triggers corresponding to the join operation shown in Figure 6.

than D + 1 triggers with identifier id, and full if there are ex-
actly D+ 1 triggers with identifier ¢d in the system. Node R
in Figure 7(a) is a full node since there are four triggers with
identifier 45 in the system. In contrast, all other receivers are
joinable. Let jHash and f Hash be two well-known hash
functions. If R is joinable, R will simply insert the trigger
(jHash(id'), R) in i3. Thus, jHash(id') identifies the jset
to which R belongs. Otherwise, if R is full, it will join the
corresponding fset by inserting the trigger (f Hash(id'), R).
For example, receivers Ry and R» will join the jset identified
by jHash(id,), while R3, which is a full node, will join the
fset identified by fHash(idy).

When node R,.,, wants to find the end-host R in a set (iden-
tified by) id, that minimizes the distance from S to R,,¢., it
simply sends a request message with identifier id,. In turn,
each receiver R that receives this message (i.e., each receiver
in the set id,) will send a reply to R,,.., along with the lo-
cal time-stamp, plus the difference between the time-stamps
at S and R associated to a previous message sent from S
to R.2 Upon receiving these reply messages, R uses the lo-
cal time-stamp in addition to the timing information car-
ried by the reply messages to find node R that minimizes
dist(S, R, Rpew) (See the on_receiving_query_distance()
function).

3.2.1 Comparing Source-Receiver Distances

In this section, we show that it is possible to compare
the distances from S to R, Via different intermediate
nodes using local time-stamps alone, and without assum-
ing global clock synchronization. In particular, we compute

3To decrease the variance, in practice we send an average of the
differences between R’s and S’s local time-stamps.

dist(S, R, Rnew) as a function of local time-stamps and the
clock skews, and then show that the clock skews cancel out
when performing distance comparisons.

Let d(A, B) denote the latency between nodes A and B.
Then, we have

dist(S, R, Rpew) = d(S, R) + d(R, Rpew). (1)

Let p.depart(A) denote the local time at A when packet p
departs from A, and let p.arrive(B) denote the local time at
B when packet p arrives at B. Then, we have

d(S, R) = p.arrive(R) — p.depart(S) + skew(S, R), (2)

where p is a packet that travels from S to R and skew(S, R)
denotes the clock skew between S and R. Similarly,
d(R, Rpew) = p.arrive(Rpew) — 3)
p'.depart(R) + skew(R, Rpew),

where p' is a packet traveling from R to R,,.,,. By combining
Egs. (1)-(3), we obtain

dist(S, R, Rnew) = (p-arrive(R) — p.depart(S)) +
(p'.arrive(Rpew) — p'-depart(R)) +

skew(S, Rpew),

where we replaced skew(S,R) + skew(R,Rpew) by
skew(S, Rpew). Note that the value (p.arrive(R) —
p.depart(S)) is computed by R upon the arrival of
packet p from S, and sent to R, in the reply message
as r.src_dist (see on_receiving_packet_from_src() and
on_receiving_query_dist() functions).

/I join the multicast tree idg

join(idg)
best_dist = co
ideyrr = idg
do

/1 return reply form selected node in jset (idcurr)
(id, dist) = select_node(jHash(idcurr))
if (best_dist > dist)
best_dist = dist
idjoin = id
(id, dist) = select_node(f Hash(idcyrr))
if (id = NULL) break
idcu'rr =1d
while (dist < best_dist)
join_at(idjoin) I/ Nodejoins at id;oin
join_at(id_join)
close_id = pick_closeid()
insert_trigger (close_id, my_address)
insert_trigger (id-join, close_id)

select_node(set_id)
dist = o0
p_set = query_distance(set id)
foreach (p € p-set)
d = curr_time — p.time_stamp + p.src_dist
if (d < dist)
dist =d
id = p.ad
return (id, dist)
on_receiving_query_distance(p)
r.id = my_trigger_id
r.time_stamp = curr_time
r.src.dist = src_dist
send_pkt(p.requester,)

on_receiving_pkt_from_src(p)
src_dist = curr_time — p.time_stamp

Figure 8: Joining multicast protocol in 43.

The important point to note in Eq. (4) is that skew (S, Ryew)
does not depend on R. This allows us to use the sum
(p.arrive(R) — p.depart(S)) + (p'.arrive(Rpew)
p'.depart(R)) instead of the absolute value of
dist(S, R, Rpey) to compare the distances between S
and R, Via any intermediate node R.

3.2.2 Other Issues

So far, we have discussed the case of a single source sending
data to the multicast tree. However, this is not a fundamen-
tal restriction. As long as a member of the multicast group
knows the group identifier id, it can send data to the group.
The only cost incurred by this simple scheme is that pack-
ets originated at sources farther away from the id, location,
will experience higher latencies; the scalability and the ro-
bustness of our protocol are not affected.

Our join procedure assumes that at each level there is at least
a non empty jset or fset. However, in time all receivers at one
level may leave which will cause these sets to become empty.
To alleviate this problem, each receiver periodically probes
the parent level and checks if it can join at the parent level.
We can also make sure that this process causes negligible in-
crease in control traffic by limiting the periodicity of probes,
say once every 10 seconds in practice.

Finally, each receiver needs to decide whether it is joinable
or full in order to decide what set to join. We describe a sim-
ple scheme to address this problem next. Consider a receiver
R connected to the hierarchy through trigger (id, R). Then,
R can periodically try to insert a dummy trigger (id, z). If it
is successful, this means that ¢d is joinable and R joins jset.
R also immediately removes the trigger (id, z). If not, this
means that there are already D triggers with the identifier id
in the system, and as a result R joins fset.

3.3 Trigger Refreshing

Recall that ¢3 uses a soft state approach to maintain triggers
in the system. If a trigger is not refreshed for a pre-defined
period of time T (which in our implementation is 30 sec), the
trigger is removed from the system. The question we address
in this section is how to keep the triggers in the hierarchy
alive without compromising the scalability of our protocol.

A simple solution would be that each receiver refreshes all
triggers on the path from the source to itself. For example,
in Figure 7, Rg would be responsible for refreshing triggers
(idy,ids), (ids, ids), and (ids, Rs), respectively. The main
problem with this approach is that the number of refreshes
received by a trigger increases exponentially as we move up
in the hierarchy. In particular, a trigger will be refreshed by
all receivers covered by the sub-tree rooted at that trigger.
For example, trigger (id,, ids) will be refreshed by receivers
Rs3, R4, R, and Rg, respectively.

We use two techniques to address this problem. First, we
introduce a new control message, denoted REFRESH_ACK,
to suppress the redundant refresh messages. When receiver
R refreshes trigger (id;, id;) it also sends a REFRESH_ACK
message to id;. Since this message will be multicast in the
entire sub-tree rooted at id;, it will eventually reach all
receivers covered by this sub-tree. Upon receiving a RE-
FRESH_ACK message for a given trigger, a receiver simply
restarts the timer to refresh that trigger.

The above technique alone is not enough to reduce the num-
ber of refresh messages. Indeed, if all receivers refresh a
given trigger at the same time, REFRESH_ACK will do noth-
ing to suppress any of these refreshes. The classic solution
to address this problem is to randomize refresh timers. In
particular, a receiver chooses a random timer that is uniform
distributed in the interval [0,T"). Let n be the number of re-
ceivers in the sub-tree rooted at trigger ¢, and let RTT de-
note the round-trip time between a receiver in this sub-tree

and trigger ¢ (for simplicity assume that all receivers have the
same RT'T). Then, the expected number of refresh messages
received by trigger ¢ during a refresh period is brought down
tonx RTT/T fromn. This is because it takes RT'T" from the
moment the first refresh is sent to ¢ until all receivers in the
sub-tree learns about it (via the associated REFRESH_ACK
message), and the probability that a refresh timer will trigger
during this time interval is RTT/T.* To quantify the sav-
ings, if T = 30 sec and RT'T = 100 ms, this simple tech-
nique can reduce the number of refreshes by two order of
magnitude. While this represents a significant reduction for
most practical cases, it might not be enough for very large
multicast groups with millions of receivers.

To further improve the algorithm, we choose timers such that
a trigger will be almost always be refreshed by the receivers
at the first and second levels, and the refreshes of receivers at
the lower levels will almost always be suppressed. In particu-
lar, each receiver chooses the timer associated with a trigger
that is one or two levels up the tree with respect to itself in
the interval (aT, T), and the timers associated to the trig-
gers that are higher than two levels in the hierarchy in the
interval (8T, T).

In practice, we choose & = 1/2 and 8 = 3/4. Simulation
results in Section 5.2 show that this simple scheme results in
a significant reduction of the number of redundant refreshes,
and more importantly, the number of redundant refreshes is
virtually independent of the tree size.

So far we have implicitly assumed that the refreshes are no
lost. To accommodate message losses we decrease the timer
intervals by a factor k. In practice, we choose k& = 3.

4 Redliable Multicast

Developing reliable multicast solutions has proven a diffi-
cult and challenging problem. Even when the assumptions
allow changes in the infrastructure, the resulting solutions
are complex and exhibit undesirable tradeoffs. For instance,
with SRM, there is a clear tradeoff between the number of
duplicates and the time to recover from failure.

This section demonstrates the flexibility of our multicast ar-
chitecture, by presenting a solution for reliable multicast that
is both simple and scalable. To reduce the number of dupli-
cate packets, our solution leverages the ability to multicast a
packet to a sub-tree in the trigger hierarchy. For instance, in
the topology in Figure 7(a) one can multicast a packet only
to receivers Ry, Rs5, and Rg by sending the packet to identi-
fier ids. In addition, to avoid the NACK implosion problem
our solution leverages the anycast capability offered by 3.

Figure 9 shows the pseudocode of the recovery procedure.

“With timer chosen uniformly at random in the interval [0, T),
the expected number of refreshes is in fact 2 x n x RT'T/T as the
expected number of refreshes in each refresh period is two in the
absence of suppression.

/I function called on packet loss
on_packet_loss(seq_num)
// send packet to anycast group at my level to respond
/1 to loss of seq_num, reply to be sent to my_addr

request_repair (repair group[my-level], seq-num, my_addr, TO)

request_repair (anycast_id, seq_-num, req_id, to)
send_repair _req(anycast_id, seq-num, req_id)
set_timer (curr_time + to, request_repair,
anycast_id, seq-num, req_id, to)

on_receiving_repair _req(q)
/I repair request already received ?
if (pending_repair_req[q.seq-num] = FALSE)
/I get repair packet
if (r = get_packet(q.seq-num, packet_queue))
send_repair (r, q.req-id)
else
// doesn’'t have the repair packet; send request up the tree
request_repair (repair_group[mylevel — 1],
q.seq_-num, parent_id, TO)
pending_repair _req[q.seq-num] = TRUE

on_receiving_repair (r)
pending_repair_req[r.seq-num] = FALSE
remove_timer (request_repair, seqg_-num,)

Figure 9: Pseudocode of the recovery procedure.

The main idea is to associate a recovery anycast group with
each internal node in the hierarchy. Each receiver subscribes
to exactly one anycast group, that is, the anycast group as-
sociated with its parent. In the example in Figure 6(a) there
will be two recovery anycast groups: one associated with the
source S consisting of receivers Ry, Rs, and R3, and another
one associated with receiver R3 consisting of receivers Ry,
Ry, and Rg, respectively.

We assume that all data packets have a unique sequence
number and that losses are detected when packets arrive
out of sequence.®> When a receiver R detects a packet loss,
it sends a repair request for the lost packet to its anycast
group. Upon receiving a repair request, a receiver R, checks
whether if it has the requested packet, and if yes, sends the
packet directly to the requester (R) via IP unicast. If not,
R, assumes that everyone in its anycast group has lost the
packet, and it takes the responsibility for recovering the lost
packet by sending a repair request to its parent’s anycast
group. If the recipient of the repair request at the higher level
has the packet, it sends the packet to everybody in the subtree
rooted at the node corresponding to the requester’s anycast
group. If the packet is absent at the higher level, the recovery
procedure proceeds recursively.

To illustrate the repair procedure consider the multicast tree

5In practice, we may allow a certain number of out of sequence
packets before concluding that a packet was lost. This would allow
us to tolerate packet reordering.

in Figure7(a). Assume receiver R4 loses a packet. As a re-
sult it sends a repair request to the anycast group consisting
of nodes R4, R5, and Rg, respectively. Assume this repair
request is delivered to Rg. If Rg has the packet, it sends it
directly to node R4, and we are done. If not, Rg forwards
the repair request to its parent anycast group, that is, to the
anycast group consisting of Ry, Rz, and R3. Assume the re-
pair request is delivered to R, and that R, has the requested
packet. Then R, will send a repair to id3. As a result, the
repair will be multicast to all receivers in the sub-tree routed
at id3 including R4 and Rg.

One remainder question is how to construct the anycast iden-
tifiers. Consider a receiver R which is connected to the
multicast tree by triggers (id;_1,%d;) and (id;, R), respec-
tively. Then R; will insert a trigger (id,, R) where id, =
H,(id;—1)|loss_rate(R). The sign “|” represents the con-
catenation symbol. H,.() is a well-known hash function that
returns 128 bit values, and loss_rate(R) represents R’s loss
rate as measured by R.

When a receiver R loses a packet, it sends a repair re-
quest with identifier id,.q = H(id;—1)|0. Since i3 uses the
longest prefix matching scheme to match the packet and the
trigger identifiers (see Section 2.3), the repair request will be
delivered to the sibling of R which experiences the lowest
loss rate, that is, to the receiver that is most likely to have
received the requested packet.

One potential problem with this scheme is that when the
packet is lost at a higher level of the hierarchy, all receivers
belonging to the same recovery anycast group at a lower level
will send repair request messages. Let R, be the receiver in
the anycast group that experiences the lowest loss rate. Then,
in the worst case, R, receives up to 2 x D repair request
messages, where D is the maximum out-degree of the multi-
cast tree: D repair requests from all member of R, ’s anycast
group (including R, itself), and D repair requests from the
level immediately below. Next, we present two simple solu-
tions to alleviate this problem.

With the first solution, a receiver that detects a packet loss
waits for a random period of time, uniformly distributed in
the interval [0,T"), before sending a repair request for the
missing packet. Assume a packet is lost at a higher level. Let
to denote the time when the first repair request for that packet
is sent, and let ¢, + A be the time when the repair arrives
at end-hosts which lost the packet. Then all repair requests
that were scheduled to be sent after time tq + A will be sup-
pressed. As a result, the number of repair requests delivered
to the receiver with the lowest loss rate from a recovery any-
cast group decreases from 2 x D to roughly 2 x D x A/T.
This is because the probability that a receiver (which has lost
the packet) to send a repair request during a time interval of
length A is A/T'. On the downside, this solution increases
the time to receive the repair. If only one receiver losses a
packet, it will take the receiver an additional 7'/2 time to

receive the repair on average.®

So far we have assumed that the repair requests are always
delivered to the member of the anycast group which expe-
riences the lowest loss rate. The idea of the second solu-
tion is to spread the responsibility to answer the repair re-
quests among the members of the repair anycast group. To
achieve this we redefine the anycast identifier of receiver R
asid, = H,(id;_1)|H.(IPr), where I P represents the IP
address of receiver R. When a receiver R loses the packet
with the sequence number seq_n, it sends a repair request
with identifier id,.q = H,(id;—1)|Hy(seq-no). This way,
all repair requests for the same packet are delivered to the
same receiver, while repair requests for different packets are
delivered to different receivers, thus achieving load balanc-
ing. The downside of this approach is that the receiver to
which the repair requests are delivered may have poor recep-
tion characteristics. Section 5.3 uses simulation experiments
to compare these two solutions.

5 Simulations

In this section, we evaluate our algorithm using simulation.
Specifically, our results focus on (1) the efficiency of tree
construction, (2) scalability of the trigger refresh mecha-
nism, and (3) the efficiency and scalability of the recovery
mechanism. In Section 6, we give a preliminary evaluation
of our prototype implementation on a cluster of servers and
in a small wide-area testbed.

Our simulator is based on the 43 protocol described in [26].
In our simulations, we consider a 10,000-node transit stub
topology generated using the GT-ITM topology genera-
tor [15].7 Link latencies are randomly chosen between 1 and
3 ms for intra-transit domain links, between 5 and 10 ms
for transit-stub links, and between 20 and 50 ms for inter-
transit links. 43 servers and multicast members are randomly
attached to stub nodes. In all experiments, we assume 8192
13 servers, and that each multicast member knows a set of
identifiers that maps on the closest i3 server. These iden-
tifiers can be discovered by using offline sampling [26] or
through service discovery mechanisms.

To test the recovery procedure, we assign random loss rates
uniformly distributed between 0-4% to 3 hops, and between
0-8% to the hops from 43 servers to end-hosts. Both data and
control packets (e.g. refresh messages) are dropped with the
same probability. Since our main goal is to study the scala-
bility and the efficiency of our approach, we do not consider
13 server failure. However, we notice that i3 server failures
will be transparent to the end-hosts modulo the time it takes
end-hosts to refresh the triggers that were stored at the failed

®The additional T'/2 represents the estimated delay of sending
the repair request.

"We have also ran simulations using power-law network topolo-
gies, and obtained very similar results.

servers.® Finally, since each end-host is responsible of re-
freshing the entire chain of triggers from source to itself,
end-host failures will have no effect on the trigger hierarchy.

5.1 Treeconstruction

To test the scalability and the efficiency of the tree con-
struction algorithm described in Section 3, we ran a number
of simulations varying the multicast group size from 16 to
65536. In our evaluation, we use four metrics, which were
previously introduced in [8, 6]:

Latency Stretch, the ratio of the latency from the source to
receiver in 43 to the latency along the shortest path (IP la-
tency).

Ratio of the Maximum Delay (RMD), the ratio between the
maximum delay using ¢3 multicast and the maximum delay
using IP routing.

Ratio of the Average Delay (RAD), the ratio between the av-
erage delay using 43 multicast and the average delay using
IP routing.

Link stress, the number of copies of each multicast packet
that travels through that link.

Figure 10 plots the 90" percentile latency stretch, the RAD,
and the RMD between the source and the receivers. As ex-
pected, the stretch increases only logarithmically with the
size of the network. In addition, these results indicate that
the resulting multicast trees could meet the latency require-
ments of a large number of applications. Indeed, even for a
group of size 65536, the RMD and RAD do not exceed 3.5,
and the 90" percentile of the latency stretch does not exceed
5.

Implementing multicast at the application layer results in
multiple copies of a packet being sent on the same physi-
cal link. Figure 11 plots the maximum stress observed on
any link. While the maximum stress increases with the group
size, we note that this increase is sub-linear and that even for
a group of size 2'6, it does not exceed 130. Still this value is
much larger than the out-degree of the multicast tree, which
in our case is 8. The reason for this disparity is that triggers
with different identifiers end up on the same 3 server. This
is equivalent to multiple internal nodes in the multicast tree
mapping on the same i3 server. If k different trigger identi-
fiers are stored at the same server, the stress on the server’s
outgoing link can be as high as k£ x D. As the size of the group
increases the probability that more than one trigger identifier
is stored at an ¢3 server increases considerably. Recall, that
there are only 8192 43 servers, while the size of the multicast
group can be as high as 65536.

8All triggers stored at a failed server will be instantiated next
time they are refreshed by end-hosts. Note that, to increase the ro-
bustness, one can assume trigger replication at the level of the 3
infrastructure [26].

10

55

45 [—T

4t / g 1
S 35| T d
! /’/ — |
% 25 / |] 4
20 ,,,,:(/{/J’ i
15 | i 4

90th percentile
RAD

0.5

.
1000
Group size

.
10 100 10000 100000

Figure 10: The latency stretch of the multicast tree

140

120 |)]
100

80 - /
60 - /

40 + /

20 - T

Maximum stress

. .
1000 10000

Group Size

.
10 100 100000

Figure 11: The maximum stress caused by the overlay mul-
ticast tree on the links of the underlying network

5.2 Scalabletrigger refreshing

In this section, we evaluate the refresh schemes described in
Section 3.3. With the first scheme, called refresh-unif, each
receiver refreshes each trigger in its chain by using timers
uniformly distributed in the interval [T'/2, T'), where T is the
refresh period for triggers in 3. In contrast, with the second
scheme, called refresh-level, a receiver uses timers uniformly
distributed in the interval [T'/2, 3T'/4) to refresh the triggers
one and two levels above it in the hierarchy, and timers uni-
formly distributed in the interval [37'/4, T') to refresh all the
other triggers in its chain.

Figure 12 plots the maximum and the average number of re-
freshes per trigger during a time interval of length T', for both
schemes as a function of the multicast group size. As ex-
pected, the refresh-level scheme reduces the maximum num-
ber of refreshes per trigger significantly. Moreover, the dif-
ference increases as the size of the group increases. This is
because, as explained in Section 3.3, with refresh-level the
refreshes of the receivers placed at more than two levels
down the hierarchy are suppressed with a very high probabil-
ity. In contrast, the average number of refreshes are roughly
the same for both schemes (i.e., about 1.5), with refresh-unif
performing slightly better. This is because receivers near a
trigger are more aggressive in the case of refresh-level (their

18

Average number of refreshes (uniform) ——
16

Maximum number of refreshes (uniform) —— | |
Maximum number of refreshes (level-based) —=—

Num of refreshes in a refresh period

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Group size

Figure 12: Maximum and average number of refreshes per
refresh period

timers are three times smaller on average), which results in a
slightly larger number of refreshes.

53 Reliability

In this section, we evaluate the recovery procedure described
in Section 4. As an optimization, upon detecting a packet
loss, a receiver sends a repair request after a time period
randomly chosen between 0 and 300 ms. This optimization
decreases the chance of a receiver sending a repair request
before the repair data triggered by another repair request is
received.

The timeout for re-sending a repair request is 800 ms. We
evaluate the two schemes presented in Section 4: rel-loss,
where the repair request is delivered to the receiver which
experiences the lowest loss rate, and rel-random, where the
repair request is delivered to a random receiver within the
same recovery anycast group. In our evaluation, we consider
three metrics: (1) the number of packet duplicates per packet
loss, (2) the time it takes to receive the repair, and (3) the
number of repair requests received by an end-host.

Figure 13 plots the number of packet duplicates per packet
loss. Ideally, this value should be zero. However, due to the
fact that repairs might be multicast, receivers who haven’t
lost the packet would receive duplicates. As shown in Fig-
ure 13 both schemes perform well; in either case the number
of duplicates per packet loss is less than 1.5° and practially
remains constant at large group sizes. However, as expected,
the rel-loss perform slightly better. This is because, the re-
ceiver that gets the repair requests is the one that experiences
lowest loss rate and is hence more likely to have the packet.

Figure 14 plots the cumulative distribution function (CDF)
of the recovery time, that is, the time it takes to receive a re-
pair from the moment the loss was detected. There are two
things worth noting. First, in 85% of the cases, the repair
arrives within 600 ms, thus obviating the need to send a sec-

®For comparison, in SRM [13], if only one receiver loses a
packet, all receivers would receive a duplicate packet.

11

15 %

0.5

Number of duplicates per lost packet
=

Anycast identifiers based on loss-rate

0 : : : .
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Group size

Figure 13: Total number of duplicates as a fraction of total number
of drops.

09 |
08 |
07t
06 |
05|
04

Cumulative distribution

03
0.2

01} Anycast identifiers based on loss rate

1000 1500 2000

Time to recover (ms)

0 500 2500

Figure 14: Cumulative distribution of time to recover for 1024 re-
ceivers.

ond repair request. Second, in our experiments, all repairs ar-
rive before 2400 ms, so a third repair request is almost never
needed.

Finally, Table 1 gives the average number of repair requests
per packet loss, and the maximum number of repair re-
quests per sequence number received by an end-host for both
schemes. In terms of the average number of repair requests,
both schemes perform similarly, with each of them generat-
ing about 1.2 repair requests per packet loss. The reason for
which rel-loss performs slightly better is because the end-
hosts receiving the repair requests are more likely to have
the lost packet, which reduces the chance to forward the re-
quest at the higher level. On the other hand, in terms of max-
imum number of repair requests per packet loss, rel-random
performs much better. In particular the maximum number of
repair requests per packet loss is about five times larger in
the case of rel-loss for 4096 receivers. This is again because,
with rel-loss, the repair requests are delivered to the same
receiver, while with rel-random repair requests are spread
among different receivers based on their sequence number.

In summary, while rel-loss reduces the number of duplicate
packets and the total number of repair requests, rel-random
is more effective in avoiding hotspots due to repair requests
being delivered to the same receiver.

Group | # repairs # repairs max repairs | max repairs
size per drop per drop per seq # per seq #
(rel-loss) (rel-random) | (rel-loss) (rel-random)

16 1.12 (0.12) | 1.15 (0.16) 1.00 (0.07) | 0.18 (0.03)
64 1.07 (0.16) | 1.11 (0.12) 1.92 (0.28) | 0.31(0.04)
256 1.16 (0.05) | 1.18 (0.12) 2.87 (0.25) | 0.44 (0.06)
1024 1.18 (0.08) | 1.19 (0.07) 3.89 (0.24) | 0.64 (0.05)
4096 1.13 (0.04) | 1.16 (0.070) | 5.09 (0.54) | 0.84 (0.08)

Table 1: Number of repairs as a fraction of drop rate, and
maximum number of anycast requests per sequence number
for rel-random and rel-loss

6 Experiments

We have implemented a prototype of the multicast protocol
described in Section 3 on top of 43 [26].°

To test our protocol, we conduct experiments on two plat-
forms: Millennium, a large cluster of PCs at UC Berke-
ley [1], and a small wide-area test-bed consisting of thirteen
end-hosts. While the experiments on Millennium are aimed
at testing the implementation for medium size groups, the
second set of experiments demonstrate the performance of
our protocol in a more realistic scenario.

6.1 Millennium Experiments

Our experiments on the Millennium test-bed involve 32 ¢3
servers and 64 multicast clients. To test our implementation
for trees with multiple levels, we use D = 4 instead of D =
8 (as used in simulations).

Table 2 (a) shows the depth of the resulting multicast tree
as function of the group size. As expected, the depth of the
tree is roughly logarithmic in the group size. In particular,
the depth of the tree for 64 clients is 4.5 which is only 50%
larger than the depth of a perfectly balanced tree with 64
nodes.

To evaluate the overhead of the joining procedure, in Ta-
ble 2 (b), we give the number of control messages (i.e.,
query_distance messages in Figure 8) processed by a re-
ceiver as a function of its level in the tree. The number of
messages increases exponentially with the height of the re-
ceiver in the tree. This is because the joining procedure starts
always from the root, and, as a result, receivers at the first
level will be contacted by every new receiver joining the tree.
Since our current implementation takes about 200 us to pro-
cess a query -distance message, we can support a few thou-
sands of new clients joining every second. While this number
is large enough for most practical applications, for very large
groups the processing of query_distance messages can still
be a bottleneck.

OAt this point, the current implementation does not include the
recovery mechanism presented in Section 4.

12

Srowp | et of | [Level [#of messages
8 2(0) 1 55.9 (2.19)
16 2.8 (0.13) 2 10.1 (0.62)

3 2.36 (0.68)
32 3.4(0.22)

4 0.88 (0.40)
48 3.9(0.21) i EIRL
64 45 (0.22) &b) .

@)

Table 2: Results from experiments on Millennium showing the
depth of the tree and the number of query_distance messages pro-
cessed (standard deviations in parentheses).

6.2 Distributed Test-bed Experiments

To evaluate our protocol in a more realistic scenario, we use
a wide-area network test-bed consisting of thirteen end-hosts
at various location in the Internet as shown in Figure 15. The
end-hosts use a variety of access technologies: two of the
end-hosts have cable modem access, one has ADSL access,
two are outside continental US (Germany and Australia), and
the rest are located at US universities and are connected to
Internet2. Figure 15 also shows two representative trees built
by our algorithm.

Figure 15: The various hosts used in the wide area simulations.
Two instances of the multicast tree built are also shown, one (source
at RICE) using solid lines and the other (source at UIUC) with
dashed lines.

In each experiment, we run an 3 server on each host, and
then instantiate one sender and twelve receivers in random
order. Note that since each end-host runs an i3 server, each
receiver will pick a trigger located on the same end-host. In
each experiment, we wait until the multicast tree is fully con-
structed.

Figure 16(a) plots the cumulative distribution function
(CDF) of the latency stretch over 20 experiments. As can
be observed, in 85% of cases the stretch is less than two, that
is, the latency in the multicast tree is only twice as worse as
the IP latency.

To provide more insight into the relationship between the

multicast latencies and IP latencies, Figure 16(b) plots the
latencies in the multicast tree versus the IP latencies for each
(sender, receiver) pair. The points above the line correspond
to a stretch larger than one, while the points below the line
correspond to a stretch smaller than one. The main reason for
which we observe several point corresponding to a stretch
lower than one is not due to IP routing inefficiencies, but due
to the variability of our measurements to estimate network
distances taken a few minutes apart.

7 Related work and Discussion

As discussed in the introduction, most current multicast pro-
posals can be roughly categorized as either infrastructure-
based or host-based. Among the infrastructure-based so-
lutions are IP level multicast solutions such as IP Mul-
ticast [10], CBT [3], PIM [12] and EXPRESS [16] and
application-level (or overlay-network) solutions such as
Overcast [18], Scattercast [7] Yoid [14], and ALMI [22].
While these approaches all have significant differences from
each other, they have a high degree of scalability and a low
degree of flexibility. In response, a new class of solutions that
implement the multicast functionality exclusively at end-
hosts has emerged. Among these solutions are Narada [8],
Peercast [11] and the NICE application level multicast pro-
tocol [4]. While these solutions are highly flexible, they tend
to suffer from scalability and robustness problems.

However, there are other approaches that are worth mention-
ing. Recent advances in peer-to-peer lookup and routing pro-
tocols [23, 27, 25, 30] had led to the development of efficient
multicast solutions [24, 6, 31, 19]. While these solutions are
highly scalable, it is unclear how easy it is to add new func-
tionality on top of the basic multicast protocol.

In addition, there have been many attempts to provide reli-
able multicast functionality. SRM [13] adds support for reli-
ability by multicasting the repair requests and retransmitting
the data. While this solution (and others such as TMTP [29])
address the problem of NACK implosion, the number of du-
plicates can be very high. This is because repairs are multi-
cast to all members of the group. LMS [21] presents a finer
grained recovery service by creating a dynamic hierarchy of
servers. Similarly, STORM [28] uses a self organizing over-
lay network to provide recovery. However, these solutions
are quite complex since they require the application to build
and maintain an overlay network for recovery purposes only.
In addition, they are based on IP multicast which limits their
deployability. **

Jannotti et al [17] have proposed a multicast approach that is
quite close in spirit (but very different in detail) from what
we have proposed. This work shows that various network

"Digital Fountain [5], WEBRC, and RLM [20] provide reliabil-
ity and/or congestion control through coding. Since these schemes
would work on any multicast protocol that does best effort delivery
of data, this can be deployed on top of our multicast protocol.

13

services, including multicast, can be scalably implemented
by adding router support for two simple primitives. The first
primitive path reflection allows end-hosts to request redirec-
tion and replication at nearby routers, while the second prim-
itive, path painting allows end-hosts to find the intersection
point of their paths to a common destination. An interest-
ing and open question is whether path painting and selection
primitives could be used to more efficiently implement ¢3
primitives.

Fundamentally, this paper is based on two principles. First,
we should not focus solely on particular communication ab-
stractions like multicast, but instead should recognize that
there will be a plethora of desired communication abstrac-
tions. Second, to achieve the flexibility needed to support
these other communication abstractions, we should only em-
bed a few basic general-purpose primitives into the infras-
tructure. In this paper, we have chosen the ¢3 primitives as
the candidates, and illustrated their applicability to imple-
menting scalable and reliable multicast. However, we view
this as merely an initial stage in the search for, and evalua-
tion of, these basic communication primitives.

8 Conclusionsand Future Work

In this paper we propose a multicast solution that is scalable,
flexible, and incrementally deployable. The key idea of our
approach is to carefully split the functionality between the
infrastructure and end-hosts. We rely on the Internet Indirec-
tion Infrastructure (¢3), which provides a very basic set of
basic communication primitives (see Section 2.3). These i3
primitives enable the end-hosts to create efficient multicast
trees, and at the same time gives the end-hosts flexibility to
implement additional features such as reliability. To demon-
strate the feasibility of our approach, we have implemented
a system prototype and performed experiments on two test-
beds: a PC cluster, and a small size Internet-wide test-bed
consisting of 13 end-hosts. The preliminary results suggest
that our protocol is indeed scalable and efficient.

However, much more remains to be done. At the implemen-
tation level, we plan to evaluate the reliability mechanism in
a wide area network (so far, we have evaluated this mecha-
nism only by simulation). At the protocol level, we plan to
experiment with providing the functionality as a third party
service. In particular, a third party can take responsibility for
building and maintaining the hierarchy of triggers, thus re-
lieving the end-hosts of this burden. We also observe that we
can leverage this approach to effectively provide access con-
trol. The provider of the service can keep the group identi-
fiers and all the triggers that are part of the hierarchy a secret
and thus prevent arbitrary senders from sending to the iden-
tifiers.

References

[l] http://ww. ni |l enni um berkel ey. edu.
2] Fastforward networks. htt p: // www. f f net. com

09 e
0.8
07+ /
0.6)
05
0.4 |

Cumulative probablity

03 (
02 ‘
0.1 /

Latency stretch

(@)

B R P e
N OB O @
S S © o

[
1S)
=)

i3 multicast latency (ms)

(SN
o o
T T

o

®
[}
T

@
o
T

.
60 80 100 120 140
IP latency (ms)

(b)

.
40

Figure 16: (a) CDF of the stress from the experiments and (b) the relationship between IP latency and multicast latency.

(3]

[4]

[5]

(6]

[7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17
[18

—_

A. J. Ballardie, P. F. Francis, and J. Crowcroft. Core based
trees. In Proc. of ACM SGCOMM'’93, pages 85-95, San

Francisco, 1993.
S. Banerjee, B. Bhattacharjee, and S. Parthasarathy. A pro-

tocol for scalable application level multicast, 2001. CS-TR

4278, University of Maryland, College Park.
J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A

digital fountain approach to reliable distribution of bulk data.

In SGCOMM, pages 56-67, 1998.
M. Castro, M. B. Jones, A.-M. Kermarrec, A. Rowstron,

M. Theimer, H. Wang, and A. Wolman. An evaluation of scal-
able application-level multicast built using peer-to-peer over-

lay networks, unpublished work, 2002.
Y. Chawathe, S. McCanne, and E. Brewer. An architecture for

internet content distribution as an infrastructure service, 2000.
Y. Chu, S. G. Rao, and H. Zhang. A case for end system

multicast. In Proceedings of ACM SGMETRICS 00.
F. Dabek, F. Kaashoek, D. Karger, R. Morris, and I. Stoica.

Wide-area Cooperative Storage with CFS. In Proc. ACM

S0SP'01, pages 202-215, Banff, Canada, 2001.
S. Deering and D. R. Cheriton. Multicast Routing in Data-

gram Internetworks and Extended LANs. ACM Transactions

on Computer Systems, May 1990.
H. Deshpande, M. Bawa, and H. Garcia-Molina. Streaming

live media over a peer-to-peer network, 2001.
D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering,

M. Handley, V. Jacobson, C. Liu, P. Sharma, and L. Wei. Pro-
tocol independent multicast — sparse mode (pim-sm) : Proto-

col specification, Jun. 1997. RFC-2117.
S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang.

A reliable multicast framework for light-weight sessions and
application level framing. |EEE/ACM Transactions on Net-

working, 5(6):784-803, 1997.
P. Francis. Yoid: Extending the internet multicast architecture,

2000.
Georgia Tech Internet Topology Model. ht t p: / / wwww. cc.

gat ech. edu/ fac/ El | en. Zegur a/ graphs. htm .
H. Holbrook and D. Cheriton. [P multicast channels: EX-

PRESS support for large-scale single-source applications.
In Proceedings of ACM SGCOMM’99, Cambridge, Mas-

sachusetts, Aug. 1999.
J. Jannotti. Network layer support for overlay networks.
J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,

and J. J. W. O’Toole. Overcast: Reliable multicasting with an
overlay network. In Proceedings of OSDI 2000, San Diego,
California, October 2000.

14

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

J. Liebeherr and M. Nahas. Application-layer multicast with

delaunay triangulations. In IEEE Globecom, 2001.
S. McCanne. Scalable Compression and Transmission of In-

ternet Multicast Video. PhD thesis, UC Berkeley, Dec. 1996.

UCB/CSD-96-928.
C. Papadopoulos, G. M. Parulkar, and G. Varghese. An error

control scheme for large-scale multicast applications. In Sym-
posium on Principles of Distributed Computing, page 310,

1998.
D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI:

An application level multicast infrastructure, 2001.
S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A scalable content-addressable network. In Proc.

ACM SGCOMM 2001.
S. Ratnasamy, M. Handley, R. M. Karp, and S. Shenker.

Application-level multicast using content-addressable net-
works. In Networked Group Communication, pages 14-29,

2001.
A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-

ject location and routing for large-scale peer-to-peer systems.

In Proc. of Middleware 2001.
I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. In-

ternet indirection infrastructure. In To appear in SGCOMM,

2002.
I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-

akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proc. ACM SGCOMM’ 01, pages

149-160, San Diego, 2001.
X. Xu, A. Myers, H. Zhang, and R. Yavatkar. Resilient multi-

cast support for continuous-media applications. 1997.
R. Yavatkar, J. Griffoen, and M. Sudan. A reliable dissemi-

nation protocol for interactive collaborative applications. In

ACM Multimedia, pages 333-344, 1995.
B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An in-

frastructure for fault-tolerant wide-area location and routing.
Technical Report UCB/CSD-01-1141, Computer Science Di-

vision, U. C. Berkeley, Apr. 2001.
S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D.

Kubiatowicz. Bayeux: An architecture for scalable and fault-
tolerant wide-area data dissemination. In NOSSDAV, 2001,
2001.

